Training Module I – Management Systems

Asia Pacific Economic Cooperation (APEC)
Laboratory Capacity Building Workshop
Thailand – August 2011

High Level Importance: ISO 17025 Chemical Compliance

Asia Pacific Economic Cooperation (APEC) Laboratory
Capacity Building Workshop
Thailand – August 2011

Darryl Sullivan

Covance – Director of Scientific Affairs

AOAC INTERNATIONAL – Board of Directors

Presentation Outline

- ISO Quality Manual Contents
- Scope of the ISO 17025 accreditation
- Standard Operating Procedures (SOPs)
- Quality Assurance program
- Test method selection
- Method validation
- Instrument qualification
- Quality Control program
- Proficiency testing requirements
- Customer feedback and corrective action programs

Other Standards in Addition to ISO 17025

- U.S. FDA Good Laboratory Practices (GLP)
 - Used in U.S. Labs and others around the world
 - Very strict record keeping protocols
 - Complete data reconstruction is required
- U.S. FDA Good Manufacturing Practices (GMP)
 - Used in pharmaceutical and dietary supplement labs
 - Includes strict requirements for method validation
 - Very strict record keeping is required

The Quality Manual Contents

- The manual needs to be a compete as possible
- All aspects of ISO 17025 need to be covered
- This manual should compliment the SOP book
- Laboratory management must be clear
 - Responsible parties for action
 - Reporting structures for lab testing
- Scope of the accreditation needs to be covered
 - Test methods that are accredited
 - Record keeping and document control

The Quality Manual Contents

- All policies and procedures must be presented
- Customer feedback must be captured
- Corrective action plans must be understood
- The organization and presentation of the Quality Manual is critical
- This manual must be easily accessible to all responsible parties in the lab

Scope of the ISO 17025 accreditation

- It is important that the scope covers all related test methods in the lab
- Each laboratory location needs to be accredited
- Each appropriate test method in a lab needs to be qualified
- The chemistry labs ISO scope needs to include all of the required procedures
- Before using a testing lab, it is important that the scope of the accreditation is understood

Standard Operating Procedures (SOPs)

- All laboratories activities need to be detailed in an Standard Operating Procedure
- This includes everything from sample receipt and sample preparation – to the actual test analysis
- These SOPs must be easily understood and easy to follow
- Critical control points need to be pointed out clearly in each SOP

Standard Operating Procedures (cont)

- "If a laboratory activity is not covered by an SOP, and documented, it did not happen"
- All SOPs need to be readily accessible in the laboratory
- All chemists need to document that they have read and understand all of the SOPs
- This needs to happen on a defined schedule

The Quality Assurance Program (QA)

- Not to be confused with Quality Control
- The QA function assures compliance with SOPs as well as policies and procedures
- Some labs have a dedicated QA department
- This is required for compliance with FDA GLP and GMP regulations
- The QA group performs the "check and balance" role for a testing lab

The Quality Assurance Program (cont)

- The QA group will audit the laboratory for compliance with SOPs
- The QA group will audit the test data for completeness and accuracy
- The QA function may be handled by the laboratory operations staff

Test Method Selection

- Research and development
- Testing in support of food safety initiatives
- Development of NLEA or DSHEA Nutrition Facts
- Data for regulatory submission
 - FDA GLP
 - FDA cGMP
 - Other applicable regulations
- Data for potential litigation
 - FDA
 - Competitors
 - Consumers

Test Method Selection (cont)

- AOAC INT. Official Methods of Analysis
- ISO, EN, CODEX, BIS, GB Official Methods
- AOAC INT. SLV methods
- Other compendia methods
 - USP, FCC
 - AACC
 - AOCS
- Published methods
- In-house developed methods

Method Validation

- All accredited test methods must be validated
- This validation needs to be documented
- Full validation is not required when the lab uses AOAC Official Methods or other compendia method procedures
- All other methods require some level of validation
- Validation procedures need to be detailed in a Standard Operating Procedure

AOAC and ISO Procedures

- Single Laboratory Validation (SLV)
 - Detailed protocol
 - AOAC and ISO guidelines
- AOAC Official Methods of Analysis
 - Policies from AOAC Official Methodssm
 - ERP helps select the Study Director
 - 12 laboratory study
 - At least five test materials

Method Validation Parameters

Precision

- "Agreement among repeated measurements or trials"
- Repeatability (within one lab)
- Reproducibility (between labs)

Accuracy

- "The difference between the true value and the value obtained"
- Fortified samples
- Standard reference materials
- Alternative methods

Method Validation – continued

- Specificity
 - Ability to measure only the desired compound
- Limit of Detection
 - Lowest concentration of analyte that can be measured
- Limit of Quantitation
 - Lowest concentration of analyte that can be precisely and accurately measured
- Linearity
 - Variance from a straight line

Method Validation – continued

Range

 Upper and lower limits at which the analyte can be precisely and accurately measured

Ruggedness

 Reproducibility of results under varying conditions (e.g., different analysts, different instruments, different labs)

Robustness

- Repeatability under deliberately varied and "stressed" conditions
- Forced degradation of analyte

Instrument Qualification

- All instruments used with accredited assays need to be qualified for use
- This activity will vary between labs, but needs to be done before an instrument is used
- Some instrument vendors will provide this qualification as part of the purchase

Instrument Qualification (cont)

- FDA GMPs have a great protocol for this:
 - IQ: Installation qualification
 - OQ: Operational qualification
 - PQ: Performance qualification
- This protocol is very detailed and is used by regulated test labs
- This is not an ISO requirement, but extremely valuable for the lab

The Quality Control Program (QC)

- This program must define all aspects of the lab's efforts to monitor and control data quality
- A good QC program will drive data quality
- This program should include the following:
 - Policies on replicate testing
 - Policies on performing retests
 - Procedures for handling "out of specification" results
 - Procedures for handling "out of tolerance" results
 - Policies for use of control and reference materials
 - Programs for monitoring QC performance

QC Policy for Replicate Testing

- How many replicates are measured for each sample analysis?
- A policy needs to be developed
- It may be dependent upon the type of test
- It may be different for problematic sample matrices

QC Policy for Repeat Testing

- When should a test be repeated?
 - The test QC failed
 - A problem occurred during the analysis
 - Unusual results are found
- How many replicates are measured during a repeat analysis?
- What is the policy for "invalidating" a test result
- This requires clear documentation

Out of Specification Results (OOS)

- A separate policy is needed for samples that have a specification
- Some action maybe required when a product has a result that is OOS
- This policy may be customer specific
- Some actions are required if the product being tested is regulated
- These actions usually include an investigation and some re-analysis

Out of Tolerance Results (OOT)

- Tolerances for test results may be monitored by the laboratory for analyte – matrix combinations
- Tolerances may also be customer specific
- Any test results deemed to be OOT requires some action to be taken
- These actions may include reanalysis

Use of Control and Reference Materials

- Controls and reference materials should be used to monitor the accuracy of a test method
- These materials may be purchased as Standard Reference Materials
- These materials may be developed "in house"
- The control matrix should be the same or very similar to the test samples
- These materials should be analyzed with every group of test samples
- Ranges should be developed for acceptability

Monitoring Ongoing Performance

- Results from control and reference materials should be monitored for acceptability
- These data should also be "plotted" for any trends in data quality
- Any "drift" or change in the accuracy of a test method can be detected with this system
- These data should be documented

Proficiency Testing Programs

- In addition to the control and reference materials, external proficiency testing is required by ISO
- These are test sample submitted to the lab by an independent third party
- Analyte levels in the samples are "blind"
- Data are submitted and the third party issues scores to the lab based on performance
- These data need to be documented and monitored

Proficiency Testing Programs (cont)

- Some type of proficiency data is required for every accredited test method (ISO)
- These programs are very helpful in accessing the quality of a chemistry laboratory

Customer Feedback

- ISO requires that the testing lab has a system for clients to provide input
- This is often accomplished through surveys
- The survey information needs to be captured and monitored for trends and changes
- A system for follow-up on customer complaints is also required

Customer Feedback (cont)

- Any customer complaint requires some level of corrective action from the lab
- That leads to other types of corrective action –

Corrective Action Programs (CAPA)

- A well developed CAPA program is very important for the chemistry lab
- Corrective actions need to occur as a results of any testing errors that are detected
- Corrective actions are required as a result of any customer complaints

Corrective Action Programs (cont)

- CAPA plans must detail the actions that need to occur and the responsible parties
- These plans must include documented actions and what the outcomes were
- CAPA plans must also include control plans, to ensure against repeat errors or problems

Summary

- ISO 17025 is a great program for chemistry labs
- The program requires very detailed documentation across the lab
- Some additional programs are helpful for today's complex testing environment
- The more detailed laboratory quality programs offer a higher probability of data accuracy

Conclusion

Thank you for your attention

Questions?

Darryl Sullivan

 (608) 242-2711
 darryl.sullivan@covance.com

